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ABSTRACT

Hybrid soft computing models, based by neural, yuamd evolutionary computation technologies, haserbapplied to a
large number of classification, prediction, andteolnproblems. This paper focuses on one of sugticgiions and presents
a systematic process for building a predictive nhtalestimate time-to-breakage and provide a welktendency indicator
in the wet-end part of paper making machines. Tginosuccessive information refinement of informatgleaned from

sensor readings via data analysis, principal cormpbanalysis (PCA), adaptive neural fuzzy inferesystem (ANFIS), and
trending analysis, a break tendency indicator wal. lOutput of this indicator is the break margihe break margin is then
interpreted using a stoplight metaphor. This intetqtion provides a more gradual web break seitgitindicator, since it

uses more classes compared to a binary indicayogeBerating an accurate web break tendency iratigéth enough lead-
time, we help in the overall control of the paperking cycle by minimizing down time and improvingpguctivity.

Keywords: Soft Computing, ANFIS, Principal CompotsefPaper Industry Application.

1. INTRODUCTION

1.1 Soft Computing

Soft Computing (SC), sometimes also referred t€amputational Intelligence, was originally defineg Zadeh (1994) as
an association of computing methodologies thaexploit the tolerance for imprecision, uncertainand partial truth to
achieve tractability, robustness, low solution ¢comhd better rapport with reality According to Zadeh (1998), Soft
Computing includes as its principal members fuzzy logics (Figuro-computing (NC), evolutionary computing (E@H
probabilistic computing (PC).” As we remarked in reference (Bonissone 2001k)nhin reason for the popularity of soft
computing is the synergy derived from its composeft fact, SC’'s main characteristic is its intiinsapability to create
hybrid systems that are based on the integratioooftituent technologies. This integration prosidmmplementary
reasoning and searching methods that allow us tobote domain knowledge and empirical data to dgvdlexible
computing tools and solve complex problems.

Soft Computing provides a different paradigm inntsrof representation and methodologies, which ifatds these
integration attempts. For instance, in classicaitiol theory the problem of developing modelsssally decomposed into
system identification (or system structure) andapsater estimation. The former determines the oodehe differential
equations, while the latter determines its coedfits. In these traditional approaches, the maal igothe construction of
accurate models, within the assumptions used f@rntiedel construction. However, the models’ intetglility is very
limited, given the rigidity of the underlying regentation language. The equatiormotlel = structure + parameters’,
followed by the traditional approaches to modelding, does not change with the advent of soft cating. However, with
soft computing we have a much richer repertoireefivesent the structure, to tune the parametedstoaiterate this process.
This repertoire enables us to choose among diffetraleoffs between the model's interpretabilityd amccuracy. For
instance, one approach aimed at maintaining theelisottansparency might start wikmowledge-derived linguistic modgls
where the domain knowledge is translated into amirstructure and parametersThen the model’s accuracy could be
improved by using global or localata-driven search methods tune the structure and/or the parameteka alternative
approach aimed at building more accurate modelstnstart with data-driven search methods. Then,caddd embed
domain knowledge into the search operators to obotrlimit the search space, or to maintain theleis interpretability.
Post-processing approaches could also be usedréemore explicit structural information from thedels.

Extensive coverage of SC components can be fouBadk et al. (1997), Fiesler and Beale (1997) ansphi et al. (1998).
Hybrid SC systems are further described in Bonied897), and Bonissone et al. (1999b).



1.2 Problem Description

The problem under study is the breakage of thempapb in a paper-making machine at the wet end;itpely at or near

the site of the center roll (Chen and Bonisson88)9 A schematic of a paper machine is depictdeignre 1. Web breaks
typically result in a loss of 5-12% of productionith rather big impact on revenue. The paper oulhsidered had an
average of 35 wet-end breaks every month on a mechiith a peak value of as much as 15 in a sidgle The average
production time lost as a result of these breakk@shours/day. Considering that each paper machirks continuously
(24 hours a day, every day of the year), this domatranslates to 1.6/24 = 6.66% of its annual petidn. Given the paper
industry’s installed basis of hundreds of paperhimaes, producing worldwide revenues of about $4ltobs, this translates
to loss revenue of $3 billions every year.

Dry-end breaks are relatively well understood, ehikt-end breaks are harder to explain in terntmo$es and are harder to
predict and control. This has to do in part whik time it takes to process the paper materiafisgafrom the pulp until it
ends up as paper on the final roll versus the wagrlimits. The latter are considerably longer thia paper processing time.
That means that a prognostics system can onlywigfalsystem changes that have long transients asahaterial build-up
on drums, etc. It means also that the prognostssrélatively little opportunity to react to masdrvariability because there
is by design not enough time to warn against brealeted to these conditions. The aim of this mbjs to design a web
break predictor that will address to predict systdranges leading to breaks at the wet-end (Boréssbial., 1999a, Chen
and Bonissone 2002). This predictor will also etitmargin of breaks, i.e., how much time left tavgb break. This will
help engineers to better anticipate the breakstake remedial action. Specific requirements weress$oe the warning at
least 60 minutes before the breakage and potsntigllto 90 minutes prior to the breakage. In additihigh priority was
placed on avoiding false positive warnings.
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Figure 1. Schematic of a paper machine.

The problem to be solved, then, is the design aftaust model to predict the break tendency and-torlereakage of the
paper web in a paper making machine at the we{gretifically at or near the site of the centef)rWe report here about
the proposed solution that is the result of a dgwekent process covering several years. In the eoofghis process,
numerous techniques were evaluated and — if theyribated to an improvement of the outcome — inooaped into the
solution. The resulting information refinement pess involved data analysis (identification of reletvvariables, extraction
of structure information from data via models, madievelopment based on machine learning technicara$creation of a
break tendency and a time-to-breakage predictprejotype algorithm development, and validatiorthef predictive model
with test data. We feel this prognostic processas only applicable for wet-end time-to-breakagediction but also
applicable to other proactive diagnostics problémthe service arena and in fact we conducted sséalepilot studies in
other domains such as predicting failure for cartidilure modes of magnets in magnetic resonancagimg (MRI)
equipment.
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Figure 2: Overview of prognostics process




An overview of the system is schematically représerin Figure 2. There are two modes for the systéraining and
testing modes. In the training mode, historicabweeaks data gathered by sensors are acquiredraalgzed, signal
processing techniques are applied, and an ANFISehisditted to the data off-line. In the testingde, the sensor readings
are analyzed first using the same techniques tmitraining phase (except in run-time mode). N, ANFIS model takes
as input the preprocessed sensor data and giveg@ms the prediction of time-to-breakage on tlye Tlhis model is used to
drive a stoplight display, in which the yellow aradl lights represent a 90-minute and 60-minutaralagspectively.

1.3 Structure of paper

In the second section we will describe our propasettistage process, and we will illustrate thepstén data reduction,
variable selection, value transformation, modelegation, time-to-break prediction, and break inttica In the third section
we will present the prediction results for therirag and validation sets. The last section willteemour concluding remarks
and possible future work.

2. SOLUTION DESCRIPTION

2.1 Data Reduction

The first activity of our model building processsvaata Reduction. Its main purpose was to rerdeotiginal data suitable
for model building purpose. Data were collectedirdy the time period from June 1999 to February@®0Orhese data
needed to be scrubbed and reduced, in order tedxbto build predictive models. Observations neddebe organized as
time-series or break trajectories. The scope sfghdject was limited to the prediction of breakthwinknown causes, so we
only considered break trajectories associated wiknown causes and eliminated other break trajestor

We needed to separate the trajectories containimgeak or recorded in a 180-minute window priotttte break from the
ones recorded before such window. Since thesegteops formed the basis for the supervised trainiingur models, we
needed to label them accordingly.

Most data obtained from sensor readings exhibitesomorrect observations - with missing or zerauealrecorded for long
period of time. These were removed. We did not rempaper grade variability for this particular maeh which was
assumed not to cause big variations. This was rcoall upon inspection by an expert team. Howevegeneral, paper
grade changes can cause significant changes iegga@riables and can also be the cause of wdtreatage. The activity
was then subdivided into two steps, labeled “Dataulsbing” (step 1) and “Data Segmentation” (stepa?jich are described
below.

Step 1. Data Scrubbing. We grouped the data according to various bregkdi@ies. A break trajectory is defined as a
multivariate time-series starting at a normal opegacondition and ending at a wet-end break. Aglbreak trajectory could
last up to a couple of days, while a short breajettory could be less than three hours long.

We started with roughly 88 break trajectories afidvdriables. Data were grouped according to varlesk trajectories,
namely known break causes and unknown break caltisgas only interesting to consider breaks thatl¢gotentially be
prevented. This excluded breaks that had knownesagsich as extremely rare chance events (“obsegkeske like
substance falling on web”), grade changes, maabpeeation changes, or other non-process failuréter ghat, we extracted
both break negative and positive data from thisugrd=inally, we deleted incomplete observations abdously missing
values This resulted in a set of 41 break trajectories.

Step 2. Data Segmentation. After the data scrubbing process, we segmentedidte sets into two parts. The first one
contained the set of observations taken at the mowifea break and no less than 180 minutes priagatch break. For
example, there were a number of breaks occurrirguick succession (break avalanches) which weresuitdble for break
prediction purposes. Other trajectories containgttime required number of data for other reasohs. FEsulting remaining
data set was denoted as Break Positive Data (BRBjectories that extended beyond 180 minutes wensidered to be in
steady state (for breakage purposes) and denotditemk Negative Data (BND). After the data scraigband data
segmentation, we had break positive data that stausdf 25 break trajectories.

2.2 Variable Reduction

The second activity of our model building processswariable Reduction. Its main purpose was tovdetfie simplest
possible model that could explain the past (trgnitode) and predict the future (testing mode). idalty, the complexity of
a model increases in a nonlinear way with the nunabeénputs used by the model. High complexity misdtend to be
excellent in training mode but rather brittle isttag mode. Usually, these models tend to ovdréittraining data and do not
generalize well to new situations - we will referthis as lack of model robustness. Thereforedaation in the number of
variables (by a combination of variable selectiod aariable composition) and its associated rednatif inputs enabled us



to derive simpler, more robust models. This atiwas subdivided into two steps, labeled Varigbddection (step 3), and
Principal Component Analysis (step 4), which arscdi®ed below.

Step 3. Variable Selection. In the presence of noise it is desirable to usewasvariables as possible, while predicting well.
This is often referred as “principle of parsimorsduThere may be combinations (linear or nonlinedryariables that are
actually irrelevant to the underlying process, ttha¢ to noise in data appear to increase the pi@diaccuracy. The idea is
to use combinations of various techniques to séfecvariables with the greater discrimination poimebreak prediction.

It is a modeling bias in favor of smaller modetstriade the potential ability to discover bettétirfg models with protection
from overfitting, i.e., “inventing features wheretie are none” (Ali and Wallace, 1993). From thelementation point of
view the risk of more variables in the model is fiotited to the danger of overfitting. It also ifves the risk of more
sensors malfunctioning and misleading the modaliptiens. In an academic setting, the risk retuad¢off may be more
tilted toward risk taking for higher potential acaay.

Out of 41 potential sensor readings, we droppelad of 21 in a joint review with experts knowleddpe of the process due
to the sensors’ apparent information content fergrediction problem.

Step 4. Principal Components Analysis (PCA). A principal components analysis (PCA) is conceritth explaining the
variance-covariance structure through a few lirmambinations of the original variables (Johnson ®fidhern, 1988). Its
general objectives are data reduction and datapigition. Althoughp components are required to reproduce the total
system variability, often much of this variabilitgn be accounted for by a smaller numibef the principal component& (

<< p). In such a case, there is almost as much infiioman the firstk components as there is in the origipalariables.
Thek principal components can then replace the initiegdriables, and the original data set, consisting measurements on

p variables, is reduced to one consistingnofmeasurements ok principal components. Geometrically, this process
corresponds to rotating the original p-dimensioshce with a linear transformation, and then sielgabnly the first k
dimensions of the new space.
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Figure 3. Time-series plot of the first three pifpral components of a break trajectory.

An analysis of principal components often reveamtionships that were not previously suspected thedeby allows
interpretations that would not ordinarily result.oi specifically, the principal components transfation is a linear
transformation that uses input data statistics dfind a rotation of original data in such a waytttlee new axes are
orthogonal to each other and point in the directbrecreasing order of the variances. The tramsfd components are
totally uncorrelated. Computationally, there dneeé steps in principal components transformattgarison and Singh,
1985): 1) Calculation of covariance or correlatioratrix using input data sets; 2) Calculation of eeigplues and
eigenvectors; and 3) Calculation of principal comguts.

A principal component can be interpreted as a titr@asformation of the original space, i.e.,

PC;i = Fi[x (1), X, (1), ... x, (0] = D Cixi (1)
i=1



Therefore, each coefficie, reflects the relevance (or contribution) of eaaltipular variable in the computation of those
principal components. We applied the principal coments transformation to the data and found outttiefirst principal
component alone contains more than 96% of the bititia 3 principle components explained more t1#h3% of the data
variability. This is illustrated ifTable 1

Principal Eigenvalue Proportion Cumulative
Components
PC1 10.33 96.66% 96.66%
PC 2 0.476 2.33% 99.04%
PC 3 0.058 0.29% 99.33%
PC 4 0.040 0.2% 99.53%
PC5 0.027 0.14% 99.67%
PC 6 0.021 0.11% 99.78%

Table 1: Principal components analysis of 21 bpeagitive sensors.

Consequently, sample variation may be summarized figw principal components and a reduction indh& from 21
variables to three principle components was reddena a further reduction in dimensionality from g28riables to 3
principal components. Note that the reduction cofnrem both variable selection and PCA. Figurén@vss the time-series
plot of the first three principal components ofradk trajectory.

2.3 Value Transfor mation

The third activity of our model building processsndalue Transformations. Its main purpose wa®ionave noise, reduce
data size by compression, and smooth the resuliing series to identify and highlight their genepaltterns (velocity,

acceleration, etc.). This goal was achieved bygusipical signal-processing algorithms (mediarefitind rectangular filter),
which are described below, in step 5 and step 6.

Step 5. Noise Suppression and Data Compression A simple inspection of the plots of the time seridghe first three
principal components in Figure 3 for a particulegdk trajectory reveals relative high noise rati@ach of the three graphs.
Therefore we applied two filters to these timee®td suppress noise, compress data, and smogqtlotheT he first one was
a median filter, which was applied to the thre@qipal components. This filter is described irsthéction.

The median filter serves two purposes — it filteas noise and compresses data. The idea is to atim@ma block of data
into a single, representative point.

Step 6. Smoothing: Rectangular Filter We then applied a rectangular moving filter acrtss sequence of the three
principal components in increments of one. Thaid@as to smooth the data and cancel out sensesnolsigure 4 shows
the smoothed, filtered time-series plot of the ¢hpeincipal components of the break trajectory.e Thindow size of the
rectangular filter is five.
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2.5 Model Generation

Step 7. Normalization. One common practice is to normalize the data 1b, [0.9] to avoid saturation of the nodes on the
ANFIS input layer: nominal value — minimum value

normalized value = - —
maximum value — minimum value

where the minimum and maximum values are obtaigeasa one specific variable.

Step 8. Transformation. Another common practice to reduce the responsiblats variability is to take the natural
logarithm transformation. This also has the advgmtaf greater sensitivity the closer the varialsidawards the target
relative to the original response variable. Reitalt the response variable is the time to breakage.

Step 9. Shuffling Data was randomly permuted across all patternee fEason is that we expect ANFIS to learn the
underlying function mapping of input states, ob¢alifirom sensor readings, to desired output intecstay and not dynamic
(involving time changes of these values).

Step 10. Adaptive Network-Based Fuzzy Inference System (ANFIS) The specific neuro-fuzzy system we chose for the
demand prediction is a network-based implementatibfuzzy inference—ANFIS (Jang, 1993). It impleme a fuzzy
system as a 5-layer neural network so that thetstrel of the net can be interpreted in terms ohtéyel fuzzy rules. This
network is then trained automatically from data. the system, ANFIS takes as input the chosen timgiple components,
then gives as output the time to breakage. Figullastrates the network structure.

Inputs IF-part Rules THEN-part Output

F====a F===—-

Figure 5. ANFIS for demand prediction of advertisat expenditure.

ANFIS tries to minimize the mean squared error etwthe network outputs and the desired answettseeadata points in
the training set are presented. The RMSE is defased

RMsE= =5, f -]

whereY and Y are the actual and predicted responses, resplgctare n is the total number of predictions.  During the
training phase ANFIS first computes the outputthaf first data example. It then computes the RMS&xtNit keeps the
parameters associated with the IF-part fixed aheesdor the optimal values of the THEN-part partang using a recursive
Kalman filter method. Then, ANFIS compute the efffeicthe IF-part parameters on the error, feetimikk, and adjusts only
parameters associated with the IF-part based ofe#fthack error using a gradient descent technifjuis. process is then
repeated for all data examples and until the asreufficiently small or until a predefined numlzgrepochs is reached

Recall that we used the median filter with windanesof 3. Therefore, each break trajectory thaissgoemodeling contained
at most 60 data points. There were 1500 (25 bmegéctories< 60 data) data points for ANFIS modeling. We used for
training and 503 for testing. We compared reduoltglifferent set-ups. In particular, we testech® @ membership functions
in conjunction with 4 and 3 principle componentsspectively. Each input has generalized bell-sthapembership
functions (MF). For the three principle componense, there were 292 modifiable parameters forspeeific ANFIS
structure. The training of ANFIS was stopped a#&repochs and the corresponding training andnhggstiot mean squared
error (RMSE) were 0.0658 and 0.0975, respectivefar the four principle component case, there wkfe modifiable
parameters and the corresponding training andntpstoot mean squared error (RMSE) were 0.0213 aifd2d,
respectively. Table 2 summarizes ANFIS trainingtfe two training and testing conditions (with therinciple component
case in parentheses).



Condition Setting/Result

# of trajectories 25

# of total data 1500

# of training data 997

# of testing data 503

# of inputs 3(4)

# of MFs 4 (3)

Type of MF Generalized bell-shapefl
# of modifiable parameters 292 (441)

# of epochs 25

Training RMSE 0.0658 (0.0213)
Testing RMSE 0.0975 (0.0424)

Table 2: Summary of ANFIS training

Step 11. Trend Analysis. The motivation for trend analysis is to take adage of the correlation between consecutive
time-to-breakage points. If, for example, one dadant represents 9 minutes to break, the next paiat in time should
represent 6 minutes to break and the next data pgmesents 3 minutes to break because the titeevat between two
consecutive time-to-breakage points is 3 minut€berefore, the slope of the line that connectshalbe time-to-breakage
points should beslope=-1 (assuming that X-axis and Y-axis are time aimoeito-breakage, respectively). The same
argument can be applied to the predicted valudsra-to-breakage. That is, the slope of an imagitiae that connects
predicted time-to-breakage should be close tof-iéihave a perfect predictor). This line is dexoas the prediction line.
In reality, predictions are almost never perfeat thu noise, faulty sensors, etc. Hence we wouletnget a prediction line
with slope=-1. Nevertheless, the slope of the predictior livould get closer to the target if outliers —pctide data points
that are far away from the prediction line — areursively removed and if the slope of the predittioe is recursively re-
estimated.

Even more importantly, predictions will be incortieig when the open-loop assumption is violated aBrupt change in the
slope indicates a strongly inconsistent predictibhese inconsistencies can be caused, among dtingst by a control
action applied to correct a perceived problem. \Weiaterested in predicting time-to-breakage inrefo®p (if no control
action is taken). However, the data are collectid the process in closed-loop (controlled by tperators). Therefore we
need to be able to detect when the applicatioronfrol actions have changed the trajectory's tremduch cases we suspend
the current prediction and reset the predictiotonys This step eliminates many false positives.

We kept a moving window of size ten. Then the slapd the intercept of the prediction line weréngatied by least mean
squares. After that, three outliers to the lineememoved. Then the slope and intercept of tleeliption line with the
remaining seven data were re-estimated. We aduatiee window in time and repeated the above slopk iatercept
estimation process. The results were two timessef slopes and intercepts.

Time-to-breakage
A

Predicted
Actual

120 min \ \
90 min \ \
60 min

E(60)

>
time of break E(0) time

Figure 6: Conceptual prediction results and E(&(Q))



Then two consecutive slopes were compared to seeféiothey were away fromslope=-1. If they were within a pre-
specified tolerance band, e.g. 0.1, we took avarafighe two intercepts. In this way, predictionsrevcontinuously adjusted
according to the slope and intercept estimatiogure 6 shows the conceptual prediction result.

Figure 7. Resultant trending analysis of four kreajectories;
Target = Dashed line (---); Point Prediction (o)pWhg average ().

In Figure 7, X-axis and Y-axis represent predicttmunts and time-to-breakage in minutes, respdgtivéhe dashed line
represents the target, while the circle and thestnts represent the point prediction and the impaverage of the point
prediction, respectively. The final prediction was (equally) weighted average of the point préalict(typically
overestimating the target) with the moving aver@ggically underestimating the target).

2.6 Time-to-Breakage Prediction

Stoplight M etaphor. We believe that the best way to alert the operabmut the advent of a higher break probability or
break sensitivity is to use a stoplight metaphdricv consists in interpreting the output of timebteakage predictor. When
the time to breakage prediction enters the ran@6{® minutes, an alert (yellow light) is issueddicating a possible
increase in break sensitivity. When the preditiee to breakage value enters the range [60-0] tagwan alarm (red light)
is issued. This is illustrated in Figure 7.

Clearly the best prediction occurs when the ergiwben the real and the predicted time to brealsagero. However, the
utility of the error is not symmetric with respectzero. For instance, if the prediction is todyege.g., 30 minutes earlier),
it means that the red light is turned on 90 miniltefore the break, while expecting the break taunaec 60 minutes. This
early alarm forces more lead-time than needed tifyvéne potential for break, monitor the variouopess variables, and
perform a corrective action. On the other hanthefbrake is predicted too late (e.g., 30 minlges), it means that the red
light is turned on 30 minutes before the break,evakpecting the break to occur in 60 minutes. sTmror reduces the time
available to assess the situation and take a diveeaction. The situation deteriorates compleiélghe prediction is 60
minutes late (since the break will occur at the esagime as the red light goes on). Clearly, givem same error size, it is
preferable to have a positive bias (early predmticather than a negative one (late predictigdin. the other hand, one needs
to define a limit on how early a prediction canara still be useful.

Therefore, we decided to establish two differentiritaries for the maximum acceptable late predictiod the maximum
acceptable early one. Any prediction outside eftibundaries will be considered either a falseiptied or a false negative.
We define the prediction error

E(t) = [Actual time to break (t)— Predicted time to break (t)]

and we will report prediction results in terms ofiiatogram of the prediction error E(t). In partaoy focus will be on two
instances of E(t)E(60) - prediction error at the time when the red lightused on, and(0) - prediction error at the time
when the break occurs.

Incorrect classifications are typically classifiasl false negatives (FN) and false positive (FP)héncontext of late or early
predictions, these categorizations are based omtgnitude of deviation from true time of breakagbkerefore, we will
define the following limits as the maximum alloweelviations from the origin:

False Negatives A prediction is considered a false negative iffaieto correctly predict a break more than 20 nésulater
than the actual time to breakage, i.e., E(60) < rfifutes. Note that a prediction that is late mthv@n 60 minutes is
equivalent to not making any prediction and hathegbreak occurring.



False Positives A prediction is considered a false positive if aé fo correctly predict a break if the predictismmore than
40 minutes earlier than the actual time to breakage E(60) > 40 minutes.We consider this to be excessive lead time,
which may lead to unnecessary corrections, for @am slow-down of the machine speed.

Although these are subjective boundaries, they sgeite reasonable and reflect the greater usefsliredaving earlier
rather then later warning/alarms.

Step 12. Performance Evaluation The Root Mean Squared Error (RMSE), defined in iBecl0, is a typical average
measure of the modeling error. However, the RM8&schot have an intuitive interpretation that cduddused to judge the
relative merits of the model. Therefore, additiopatformance metrics were used that could aideretraluation of the time-
to-breakage predictor:

» Distribution of false predictions. E(60) False positivesre predictions that were made too early (i.erentiban 40
minutes early). Therefore, time-to-breakage ptemis of more than 100 minutes (at time = 60) fatb this
category. False negativeare missing predictions or predictions that weeglentoo late (i.e., more than 20 minutes
late). Therefore, time-to-breakage predictionsegtlthan 40 minutes (at time =60) fall into thieegary

» Distribution of prediction accuracy: RMSE Prediction accuracy is defined as the root meararsgu error
(RMSE) for a break trajectory.

» Distribution of error in the final prediction: E(0) The final prediction by the model is generally as$ated with
high confidence and better accuracy. We assodiatithi the prediction error at break time, i.e.QF(

» Distribution of the earliest non false-positive prediction The first prediction by the predictor is generally
associated with high sensitivity.

» Distribution of the maximum absolute deviance in prediction This is the equivalent to the worst-case scendtio.
shows the histogram of the maximum error by thelipter.

3.0RESULTS

The model was tested on the data withheld duriegstiuffling step. It was furthermore validated againdependent data
sets, both break positive data (BPD) and breaktivegdata (BND). Shown in figure 8 are a.) thetdgsams for the error
before the red zone, b.) final error E(0), c.) ieatlvalid prediction, and d.) maximum absolute@efor the test data set. The
most important histograms are the histograms 8rad)8.b.) showing the distribution of E(60) and)E{@., the distribution
of the prediction error at the time of the aledrzone) and at the time of the break. The modadsteao slightly
underestimate the time-to-breakage. This is a el@$gature because it provides a more conservasirmate that does not
lead to an incorrect sense of time available feraperator. The mean of the distribution of thalfierror E(O) is around 20
minutes, (i.e., we tend to predict the break 20utaig earlier) From the histogram of the earliestlfprediction, one can see
that reliable predictions can be made, on averagayt 150 minutes before the break occurs.

PERFORM ANANCE Train and Test| Validation | Validation Set for
CATEGORY Set for BPD |Set for BPD BND
Trajectories Total Number of trajectories 25 59 34
Predictions Total Number of Predictions 25 25 34
Number of useful
Correct (Useful) predictions 24 13 34
Number. of missed 0 34 0
False Negative predictions
Number of late predictions 1 4 0
False Positive Number of early predictions 0 7 0
Coverage: # Predictions/ # Trajectories 100.00% 42.40% 100%
. ) # Correct predictions/#
Relative Accuracy: Predictions 96.00% 52.00% 100%
Global . # Correc_t pred_lctlons/# 96.00% 29 05% 100%
Accuracy: Trajectories

Table 3: Analysis of the Histograms E(60) - Err@f@e Red Zone and E(0) - Final Error



Table 3 summarizes the salient performance mefoicgraining and test set BPD, validation set BRIDd validation set
BND. For the training set BND, similar behavior thie error between time to break = 60 and time &akr= 0 can be
observed. The variance of at the time of the b{e=K) is the same as at the time of the alarm(Q{tmnutes). Out of a total
of 25 break trajectories, we made 25 predictiorfsywbich 24 were correct (according to the lower amgper limits

established for the prediction error at time =&@, E(60). This is further illustrated in Figure 9

# of break trajectories

0
100 120 140 160 180
Earliest valid prediction in minute Maximum absolute error in minute

Figure 8. Resultant performance distributionstést set

This corresponds to coverage of 100% of all trajees. The relative accuracy, defined as the mtioorrect predictions
over the total amount of prediction made was 96Ble global accuracy, defined as the ratio or conpeedictions over the
total amount of trajectories, was also 96%.

L ower
limit
A False
False Negative r Y Positive
No Late Correct Early
Predictions Predictions Predictions Predictions
(0) (1) (24) (0
- 60 -40 -20 0 20 40 E(60) [min]

Figure 9. FP and FN evaluation for training d&ta s

When we ran the model on validation set data, BED that were independently acquired during a tpegod of July 1,
2000 to December 31, 2000. The system made aaio2al predictions on 59 wet-end trajectories. (uhese predictions 13
predictions were considered useful predictionspating to the original limits on lead (40 minutes)d lag (20 minutes).
Four of these predictions were “right on the moneyhile nine more were acceptable. Some caveatsnapeder when
interpreting the results. In particular, we do kabw how many of the 59 wet-end trajectories cogrgd were actually
predictable. That is, information was not availablout whether they were caused by a process pnotdéher than by



equipment failure, scheduled breaks, foreign objéalting on web, etc.). Visual inspection of fisstrsus second principal
components for the trajectories shows very diffepaiterns among them — which might indicate déferbreak modes and
causes. In addition, thereassix months gapetween the training set used to build the modédlthe validation test. Such a
long period tends to degrade the model performancen-line mode, we would have used part of the hesak trajectories

to update the model.

The process has been further validated when weeabplto a second data set with break negativa (BND) to validate
against false positive generation during steade siperation. Out of 34 data sets, no false pestivere generated. There
were a number of slopes trending downward (17¥sfart periods of time (less than 10 minutes eadtigtware attributable
to “normal” process variations and noise not inthi@aof impending wet end breaks. In addition, tineight be attributed to
the close-loop nature of the data: the human opesare closing the loop and trying to prevent gdssreaks, while the
model is making the prediction in open-loop, assigmo human intervention.

4.0 SUMMARY AND CONCLUSIONS

We have developed a systematic process for buildipgedictive model to estimate time-to-breakage jamovide a web
break tendency indicator in the wet-end part ofgpapachines used in paper mills. The processssdan sensor readings
coupled with data analysis, principal componentyaig (PCA), adaptive network based fuzzy infereagstem (ANFIS),
and trending analysis. The process is summarizethdyollowing twelve components—data scrubbingadstgmentation,
variable selection, principal components analySlgring, smoothing, normalization, transformatjoshuffling, ANFIS
modeling, trending analysis and performance evinaf his process generates a very accurate mbdehiinimizes false
alarms (FP) while still providing an adequate cagerof the different type of breaks caused by unkncauses.

The system and process to indicate wet-end bremletey and to predict time-to-breakage takes ast ispnsor readings
and produces as output the "time-to-breakage" eakbomargin, i.e., how much time is left prior tavat-end break. This
break margin is then interpreted using a stopligetaphor. When the papermaking process leavewitsal operation
region (green light) the system issues warningdayelight) and alarms (red light). This interprétan provides a more
intuitive web break sensitivity indicator, sincaiges more than just two classes.

These are very significant results, since, in thgimal scope of this project we were not concemitti False Negatives, i.e.,
we were not concerned with providing a completeecage of all possible breaks with unknown causedact, in the early
phase of the project we decided to focus on a sufdereaks (caused by stickiness). We then dssmlishe possibility of
covering up to 50% of breaks with unknown causés.the later stages of the project, when providiinge-to-breakage
estimates, we relaxed this constraint. Howevers istill the case that we are not expecting a ceteptoverage of all
possible wet-end breaks.

Predictive models must be maintained over timeuargntee that they are tracking the dynamic behafithe underlying
(papermaking) process. Therefore, we suggest fieatethe steps of the model generation process aiwee that the
statistics for coverage and/or accuracy deviatesidenably from the ones experienced in this repditis also suggested to
reapply the model generation process every time d@hsignificant number of new break trajectorieay(stwenty) with
unknown causes, associated with the wet-end pahneafhachine.

To improve the results further, we feel that insieg the information content of th&°znd 3 principle component would
be helpful. This means that less correlated datal e be acquired which can be accomplished thraatgbr process
variables including chemical data and externalaldes, such as “time since felt change”, etc.addition, this particular
study used a rather small amount of break trajegofor training which to develop a model that qaovide better
generalization. Current feedback of break causetHertrajectories is sparse and not always cori&e.do not want to
pollute the model by trying to learn scheduled dimvas, mechanical failures, etc. Therefore, a Ipeattice would be
proper annotation that would allow the eliminatiof improper trajectories from the training set toogerly segment
trajectories for model development and to constaugtore informative validation set. Finally, we Wagonsider the use of
additional feature extractions and classificati@ehniques and their fusion to improve the clasdiifien performance
(Goebel, 2001).
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